fbpx
Feedback

Shop

  • Deep Learning For Creating Digital Content

    2 hrs

    Learn character animation, transferring styles between images and videos, denoising images using neural networks.

    PREREQUISITES: Basic familiarity with deep learning concepts, such as CNNs and experience
    with Python.
    TOOLS AND FRAMEWORKS: TensorFlow, Torch .
    LANGUAGES: English
    DURATION: 2 hours

     
    Apply Course

  • Introduction Of Machine Learnig (Basic)

    Day 1 | 8 hrs

    Mathematics for Machine Learning 
    1. Introduction to Calculus
    2. Introduction to Linear Algebra
    3. Introduction to Probability & Statistics

    Machine Learning Basics
    1. Fundamentals of Machine Learning
    2. Machine Learning Practical Applications: Classification, Regression etc.
    3. Supervised Learning
    4. Semi Supervised Learning
    5.Unsupervised Learning
    6. Neural Networks and Deep Learning

    Practical Machine Learning
    1. Machine Learning Frameworks : Python, Google COLAB, TensorFlow, Pytorch, Keras
    2. Code Classification and Time series Prediction Models
    3. Implementing a Neural Network from Scratch

    Quiz

    Apply Course
  • Introduction Of Machine Learnig (Advance)

    2 Days | 18 hrs

    Mathematics for Machine Learning
    1. Introduction to Calculus, Linear Algebra, Probability, Statistics and Random Variables
    2. Introduction to Python, numpy, pandas etc.
    3. Python assignments.

    Machine Learning Basics
    1. Fundamentals of Machine Learning
    2. Application in Machine Learning- Classification, Regression etc.
    3. Introduction to the theory and algorithms of :
    → Supervised Learning
    → Semi Supervised Learning
    → Unsupervised Learning
    → Graphical Models
    → Predictive Modelling

    Practical Machine Learning-Frameworks
    1. Machine Learning Frameworks :
    → Google COLAB
    → Sci-kit-learn
    → TensorFlow
    → PyTorch
    → Keras
    2. Industry grade tools and technologies for implementing a practical machine learning project
    3. Assignments – classification, regression and mathematical models
    Quiz

    Neural Network and Deep Learning
    1. Introdution to theory of neural networks and stochastic gradient descent
    2. Deep neural networks, CNN, RNN, Auto Encoders
    3. LSTM, GAN, Capsule networks

    Practical Machine Learning – Your own models
    1. Implementing a Neural Network from scratch
    2. Implementing a Deep Neural Network (CNN, RNN, GAN) in Tensorflow/PyTorch
    3. Developing AI projects and practical caveats in implementing machine learning models
    4. Organizing Machine Learning Projects

    Research and Applications
    1. Applications of AI in Industry and Academia
    2. Computer Vision
    3. Natural Language Processing
    4. What’s hot in AI research – a discussion on state of the art and recent trends in AI
    Quiz

    Apply Course